

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The N-Oxidation effect on the carbon-13 chemical shifts and. H- α in (Z)-H-Renzylidene arylamine and the orthohydroxy benzylidene analogue

Jasim M. A. Al-rawi^a

^a Chemistry Department, College of science, University of Mosul, Mosul, IRAQ

To cite this Article Al-rawi, Jasim M. A.(1987) 'The N-Oxidation effect on the carbon-13 chemical shifts and. H- α in (Z)-H-Renzylidene arylamine and the orthohydroxy benzylidene analogue', Spectroscopy Letters, 20: 10, 835 – 841

To link to this Article: DOI: 10.1080/00387018708081591

URL: <http://dx.doi.org/10.1080/00387018708081591>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

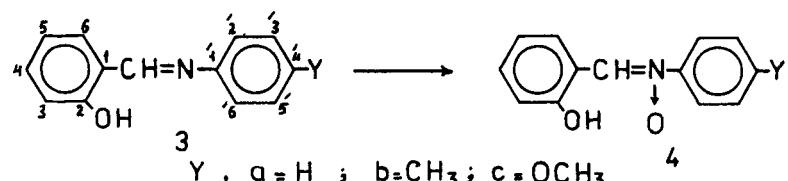
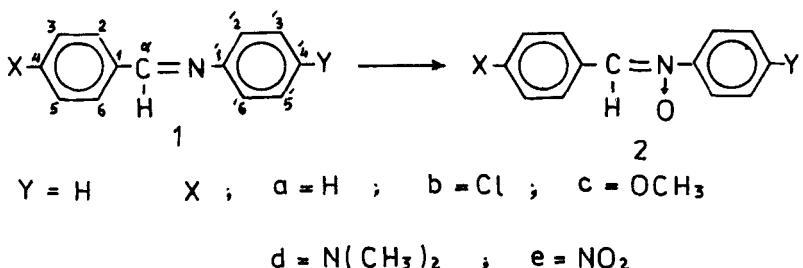
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The N-Oxidation effect on the carbon-13 chemical shifts and H- α in (Z)-N-Benzylidene arylamine and the orthohydroxy benzylidene analog^{me}

Jasim M. A. Al-Rawi

Chemistry Department, College of Science,
University of Mosul, Mosul, IRAQ.

Abstract:



N-oxidation of Z-N-Benzylidene arylamine and their orthohydroxybenzylidene analogue resulted in unexpected upfield shift of the H- α and C- α chemical shifts. The predominant resonance forms of the nitrones are discussed. The N-oxidation effects on the ¹³C chemical shift depend upon nitrogen as well as the attached carbon hybridization.

Introduction:

There has been a considerable discussion of the conformation at (Z)-N-benzylidene aniline 1 and it's derivatives⁽¹⁾ using various spectroscopic methods. Furthermore substituent effect on the ¹H and ¹³C chemical shifts of (Z)-N-benzylidene phenylamine N-oxides⁽²⁾ 2 and (Z)-N-orthohydroxy benzylidene phenylamine N-oxides⁽³⁾ 4 were studied.

This communication reports a study of the N-oxidation effect on the H- α and C-13 chemical shifts of compounds 1 and 3 in addition to the stable resonance structures of the nitrones 2 and 4. The nitrogen hybridization effect on N-oxidation were also discussed.

Results and Discussion:

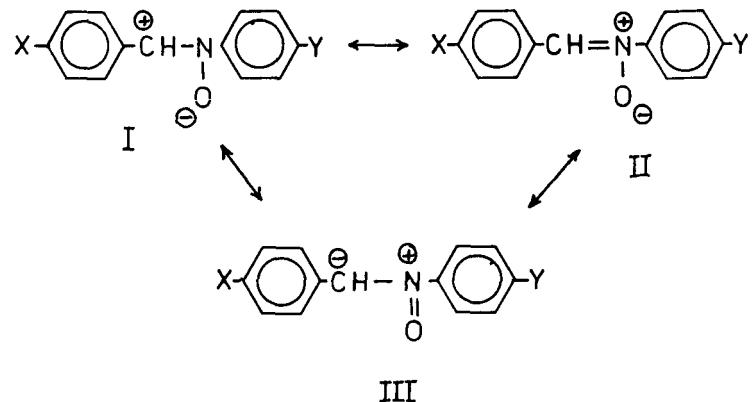
The N-oxidation of compounds 1 and 3 gave the corresponding N-oxides 2 and 4 respectively. An unexpected upfield shift of the ^1H and ^{13}C chemical shifts of $\text{H}-\alpha$ and $\text{C}-\alpha$ was observed (see Table 1). The shielding of the carbon-13 chemical shift of $\text{C}-\alpha$ varied from 24.6 - 26.7 p.p.m. in going from 1 to 2, while this effect was in the range of 20 - 22 p.p.m. on going from 3 to 4. The ^1H chemical shift of the $\text{H}-\alpha$ shows shielding between 0.3 - 0.75 p.p.m. C-1 of the benzildene ring shows a shielding of - 3.6 to - 5.1 p.p.m. in

Table 1. H -oxidation effect^a on the H and Carbon-13 chemical shift of Z-n-benzylidene arylaniline and the corresponding Z-n-(o-hydroxy benzylidene) arylaniline.

	H	C^b	$\Delta\delta\text{C}$	$\Delta\delta\text{C-1}$	$\Delta\delta\text{C-2}$	$\Delta\delta\text{C-3}$	$\Delta\delta\text{C-4}$	$\Delta\delta\text{C-5}$	$\Delta\delta\text{C-6}$	$\Delta\delta\text{C-1}$	$\Delta\delta\text{C-2}$	$\Delta\delta\text{C-3}$	$\Delta\delta\text{C-4}$	$\Delta\delta\text{C-5}$	$\Delta\delta\text{C-6}$
2a-1a	-0.68	-26.7	+3.8	+1.0	+0.3	-0.3	+0.3	-1.0	-2.1	+1.4	+0.3	+4.6	+0.3	+1.4	
2b-1b	-0.67	-26.0	-3.5	+1.0	+0.7	-1.6	+0.7	+1.0	-1.7	+1.5	+0.1	+4.2	+0.1	+1.5	
2c-1c	-0.70	-26.6	-3.9	+0.5	+0.3	-0.3	+0.3	+0.5	-2.4	+1.8	+0.6	+4.6	+0.6	+1.8	
2d-1d	-0.66	-26.5	-4.1	+0.2	+0.4	0.0	+0.4	+0.2	-3.0	+1.0	+0.7	+4.1	+0.7	+1.0	
2e-1e	-0.59	-24.6	-3.6	+0.7	+0.4	-0.7	+0.4	+0.7	-1.1	+2.4	+0.7	+4.1	+0.7	+2.4	
2f-1f	-0.69	-26.5	-3.6	+0.5	+0.3	-0.2	+0.3	+0.5	-2.4	+1.3	+0.5	+4.8	+0.5	+1.3	
2h-1a	-0.71	-25.7	-3.8	+0.5	+0.7	-0.4	+0.7	+0.5	-1.5	+1.4	+0.2	+3.1	+0.2	+1.4	
1a-3a	-0.57	-20.0	-2.4	+0.1	+2.9	+1.3	+1.6	+3.2	-0.8	+1.3	+1.2	+4.7	+1.2	+1.3	
1b-3b	0.45	-22.0	-1.4	-0.5	+2.5	+0.9	+0.7	+1.4	-1.6	+0.5	-0.2	+4.2	-0.2	+0.5	
4c-3c	-0.5	-21.1	-1.7	-0.7	+2.3	+1.0	+0.2	+1.7	-1.7	+0.7	-0.2	+2.2	-0.2	+0.7	

a $\Delta\delta\text{C} = \delta\text{C}$ of the H -oxides 2 or 4 - δC of the corresponding animes 1 or 3, the same applied for $\Delta\delta\text{H}$.

b Numbering of the carbon atoms corresponds with that in the scheme.


c H chemical shift of compound 1 and 2 were taken from ref. 1 and 3 respectively; for compound 4 were taken from ref. 2; compounds 3 were prepared from the condensation of salicylaldehyde with substituted aniline and the ^1H NMR spectra were obtained on a Brüker ^1H 90 MHz spectrometer in CDCl_3 and Me_3Si as internal reference.

d Carbon-13 chemical shift of compounds 1,2,3 and 4 were taken from ref. 7,3,8 and 2 respectively.

compound 2 and - 0.2 to - 2.4 p.p.m. in compound 4 while the remaining carbon atoms C-2, C-3, C-4, C-5 and C-6 shows very small shielding or deshielding (see Table 1.).

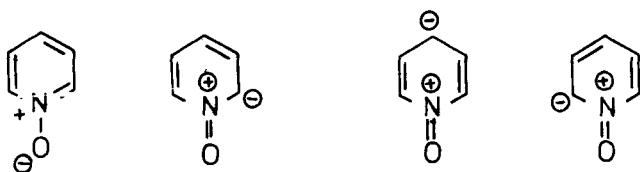
The N-oxidation also affects aniline ring where C-1 shows shielding of - 0.8 to - 3.0 p.p.m. while C-4 showed deshielding between + 1.9 - + 4.8 furthermore, C-2 and C-3 carbon atoms showed a small deshielding.

The nitrone group is usually discussed in terms of the resonance structures I, II and III⁽³⁾.

From the above findings the large shielding at C- α on going from -C=N- to -C=H is clear indication that the resonance structure III is the more predominant resonance form; indeed this can explain the large shielding effect on the chemical shifts at the C- α and H- α . Further confirmation for the stability of the resonance form III comes from the I.R. absorption of the C=N group in compound 1a at γ_{max} (Nujolcs) 1640 cm^{-1} which changes to 1590 cm^{-1} upon N-oxidation (compound 2a), meaning that N-oxidation causes a decrease in the double bond character of C = N group.

The N-oxidation effect is also transmitted to C-1 and C-1' (small shielding effect) as a result of the positive inductive effect of the negative charge of the C- α ' , while most other carbon atoms of the benzylidene ring and the aniline ring show a smaller deshielding or smaller shielding. This indicates that the localized negative charge on the C- α ' is not incorporated by resonance into the benzylidene ring. However, the positive charge on the nitrogen atom induced some resonance into the aniline ring which results in deshielding of C-2' and C-4'. This suggests that benzylidene ring was twisted out of the C=N plane even for the 2-hydroxy benzylidene ring compounds 4a - 4c which was suggested previously⁽²⁾ that it will form a strong hydrogen bonding with the N-O group which makes it coplanar with the C=N plane.

The N-oxidation effect and the hybridization of the nitrogen atom:


N-oxidation of Sp^2 nitrogen:

The N-oxidation of SP^3 nitrogen shows a deshielding of C- α ' / SP^2 or SP^3 , e.g. the N-oxidation of N,N-dimethylaniline⁽⁴⁾ caused a deshielding of N-CH₃ by 23 p.p.m.; C-1 of aromatic ring by 3.9 p.p.m. whereas the ortho-and para-carbons of the aromatic ring were also deshielded by 7.3 and 12.8 p.p.m. respectively

N-oxidation of SP^2 nitrogen:

N-oxidation of pyridine causes an upfield shift of C-2,6 and C-4 by 10.4 and 17.1 p.p.m. respectively while C-3 and C-5 were not affected⁽⁵⁾. This confirms the formation of N=O and the negative charge which resonates between the C-2,6

and C-4 carbons. The total shielding effect by the N-oxidation of the pyridine ring is 37.9 p.p.m.

This is further confirmed by the data presented in this paper for the N-oxidation effect on C- δ on going from 1 to 2 and 3 to 4.

N-oxidation effect of SP nitrogen on the ^{13}C chemical shift:

The N-oxidation of CH_3CN to $\text{CH}_3\text{C}=\text{N}=\text{O}$ ⁽⁶⁾ caused the shielding of SP carbon by 81 p.p.m. Similarly the conversion of $(\text{CH}_3)_3\text{C-CN}$ to $(\text{CH}_3)_3\text{C-CN=O}$ and $(\text{CH}_3)_3\text{SiCN}$ to $(\text{CH}_3)_3\text{SiCN=O}$ showed a shielding of the SP carbon by 84.4 and 90.3 p.p.m. respectively.

Conclusion:

N-oxidation effect can result in a valuable information on the type of resonance structures in the oxidized products, and that the N-oxidation depends on the hybridization state of the nitrogen atom as well as the attached carbon atom.

References

1. G. Odian, H. Yang and Y. Wei, Mag. Res., in Chem., 23, (11) 908 (1985) and references therein.
2. N. Arumugam, P. Manisankar, S. Sivasubramanian and D.A. Wilson. Mag. Res. in Chem. 23 (4) 246, 1985.

3. N. Arumugam, P. Manisankur, S. Sivasubramanian and D.A. Wilson, *Org. Mag. Res.* 22 (9) 592 (1984).
4. A.H. Khuthier, J.M.A. Al-Rawi, A.K. Al-Kazzaz and M.A. Al-Iraqi, *Org. Mag. Res.* 18 (2) 104, 1982.
5. F.A.L. Anet and I. Yavari, *J. Org. Chem.* 41, (22) 3589 (1976).
6. F. DeSarlo, A. Brandi and A. Guarino, *J. Mag. Res.* 50, 64 (1982).
7. T. Axenrod, X.H. Huang, M.J. Wieder and C.M. Watnick, *Mag. Res. in Chem.* 274, 1986.
8. S.R. Salman, J.M.A. Al-Rawi and G.Q. Behnam, *Org. Mag. Reson.* 22 (8) 535, 1984.

Date Received: 07/30/87
Date Accepted: 08/31/87